Cutting-Edge Technology: 5-Micron Molybdenum Disulfide Powder

What is Molybdenum Disulfide?

Molybdenum disulfide structure is an inorganic compound with the chemical formula MoS2. it is a dark gray or black solid powder with a layered structure in which each layer consists of alternating layers of sulfur and molybdenum atoms. This layered structure allows molybdenum disulfide to exhibit unique physical and chemical properties in certain areas.

Molybdenum disulfide powder is a vital inorganic non-metallic material, which is actually a solid powder formed by way of a chemical reaction in between the elements sulfur and molybdenum, with unique physical and chemical properties, and is commonly used in different fields.

In looks, molybdenum disulfide powder appears as being a dark gray or black solid powder having a metallic luster. Its particle dimension is usually from a few nanometers and tens of microns, with high specific surface area and good fluidity. The lamellar structure of molybdenum disulfide powder is one of the important features. Each lamella includes alternating sulfur and molybdenum atoms, and also this lamellar structure gives molybdenum disulfide powder good lubricating and tribological properties.

With regards to chemical properties, molybdenum disulfide powder has high chemical stability and does not easily interact with acids, alkalis as well as other chemicals. It offers good oxidation and corrosion resistance and will remain stable under high temperature, high-pressure and humidity. Another significant property of molybdenum disulfide powder is its semiconductor property, which can show good electrical conductivity and semiconductor properties under certain conditions, and is commonly used inside the manufacture of semiconductor devices and optoelectronic materials.

With regards to applications, molybdenum disulfide powder is commonly used in lubricants, where you can use it being an additive to lubricants to enhance lubrication performance and reduce friction and wear. It is also utilized in the manufacture of semiconductor devices, optoelectronic materials, chemical sensors and composite materials. Furthermore, molybdenum disulfide powder bring an additive in high-temperature solid lubricants and solid lubricants, plus in the manufacture of special alloys with high strength, high wear resistance and corrosion resistance.

Physical Properties of Molybdenum Disulfide:

Molybdenum disulfide features a metallic luster, but it has poor electrical conductivity.

Its layered structure gives molybdenum disulfide good gliding properties along the direction from the layers, a property that is widely employed in tribology.

Molybdenum disulfide has low conductivity for heat and electricity and contains good insulating properties.

Within high magnification microscope, molybdenum disulfide can be observed to exhibit a hexagonal crystal structure.

Chemical Properties:

Molybdenum disulfide can interact with oxygen at high temperatures to make MoO3 and SO2.

Inside a reducing atmosphere, molybdenum disulfide can be reduced to elemental molybdenum and sulfur.

Within an oxidizing atmosphere, molybdenum disulfide can be oxidized to molybdenum trioxide.

Methods of preparation of molybdenum disulfide:

Molybdenum disulfide can be prepared in many different ways, the most frequent of which is to use molybdenum concentrate as the raw material and react it with sulfur vapor at high temperatures to get molybdenum disulfide on the nanoscale. This preparation method usually requires high temperature conditions, but could be produced over a massive. Another preparation strategy is to get molybdenum disulfide by precipitation using copper sulfate and ammonia as raw materials. This method is relatively low-temperature, but larger-sized molybdenum disulfide crystals can be produced.

Superconducting properties of molybdenum disulfide

Molybdenum disulfide can be prepared in many different ways, the most frequent of which is to use molybdenum concentrate as the raw material and react it with sulfur vapor at high temperatures to get molybdenum disulfide on the nanoscale. This preparation method usually requires high temperature conditions, but could be produced over a massive. Another preparation strategy is to get molybdenum disulfide by precipitation using copper sulfate and ammonia as raw materials. This method is relatively low-temperature, but larger-sized molybdenum disulfide crystals can be produced.

Superconducting properties of molybdenum disulfide

The superconducting transition temperature of the material is a vital parameter in superconductivity research. Molybdenum disulfide exhibits superconducting properties at low temperatures, having a superconducting transition temperature of approximately 10 Kelvin. However, the superconducting transition temperature of molybdenum disulfide is relatively low compared to conventional superconductors. However, this will not prevent its use within low-temperature superconductivity.

Looking for MoS2 molybdenum disulfide powder? Contact Now!

Application of molybdenum disulfide in superconducting materials

Preparation of superconducting materials: Using the semiconducting properties of molybdenum disulfide, a new kind of superconducting material can be prepared. By doping molybdenum disulfide with certain metal elements, its electronic structure and properties can be changed, thus acquiring a new kind of material with excellent superconducting properties. This material may have potential applications in high-temperature superconductivity.

Superconducting junctions and superconducting circuits: Molybdenum disulfide may be used to prepare superconducting junctions and superconducting circuits. Due to its layered structure, molybdenum disulfide has excellent electrical properties within both monolayer and multilayer structures. By combining molybdenum disulfide with other superconducting materials, superconducting junctions and circuits with higher critical current densities can be fabricated. These structures may be used to make devices like superconducting quantum calculators and superconducting magnets.

Thermoelectric conversion applications: Molybdenum disulfide has good thermoelectric conversion properties. In thermoelectric conversion, molybdenum disulfide may be used to transform thermal energy into electrical energy. This conversion is highly efficient, environmentally friendly and reversible. Molybdenum disulfide therefore has a variety of applications in thermoelectric conversion, for example in extreme environments like space probes and deep-sea equipment.

Electronic device applications: Molybdenum disulfide can be utilized in gadgets due to its excellent mechanical strength, light transmission and chemical stability. For example, molybdenum disulfide can be utilized inside the manufacture of field effect transistors (FETs), optoelectronic devices and solar cells. These products have advantages like high-speed and low power consumption, and for that reason have a variety of applications in microelectronics and optoelectronics.

Memory device applications: Molybdenum disulfide can be utilized in memory devices due to its excellent mechanical properties and chemical stability. For example, molybdenum disulfide may be used to prepare a memory device with high density and speed. Such memory devices can start to play a vital role in computers, cell phones as well as other digital devices by increasing storage capacity and data transfer speeds.

Energy applications: Molybdenum disulfide also offers potential applications inside the energy sector. For example, a very high-efficiency battery or supercapacitor can be prepared using molybdenum disulfide. This type of battery or supercapacitor could provide high energy density and long life, and therefore be applied in electric vehicles, aerospace and military applications.

Medical applications: Molybdenum disulfide also offers a number of potential applications inside the medical field. For example, the superconducting properties of molybdenum disulfide may be used to produce magnets for magnetic resonance imaging (MRI). Such magnets have high magnetic field strength and uniformity, which can increase the accuracy and efficiency of medical diagnostics. Furthermore, molybdenum disulfide may be used to make medical devices and biosensors, among others.

Other application parts of molybdenum disulfide:

Molybdenum disulfide can be used as being a lubricant:

Due to its layered structure and gliding properties, molybdenum disulfide powder is commonly used being an additive in lubricants. At high temperatures, high pressures or high loads, molybdenum disulfide can form a protective film that reduces frictional wear and increases the operating efficiency and service life of equipment. For example, molybdenum disulfide can be used as being a lubricant to lessen mechanical wear and save energy in areas like steel, machine building and petrochemicals.

Like the majority of mineral salts, MoS2 features a high melting point but starts to sublimate at a relatively low 450C. This property is useful for purifying compounds. Due to its layered structure, the hexagonal MoS 2 is an excellent “dry” lubricant, much like graphite. It and its cousin, tungsten disulfide, bring mechanical parts (e.g., inside the aerospace industry), by two-stroke engines (what type utilized in motorcycles), and as surface coatings in gun barrels (to reduce friction between bullets and ammunition).

Molybdenum disulfide electrocatalyst:

Molybdenum disulfide has good redox properties, which explains why it really is used being an electrocatalyst material. In electrochemical reactions, molybdenum disulfide bring an intermediate product that efficiently transfers electrons and facilitates the chemical reaction. For example, in fuel cells, molybdenum disulfide bring an electrocatalyst to enhance the energy conversion efficiency from the battery.

Molybdenum disulfide fabricates semiconductor devices:

Due to its layered structure and semiconducting properties, molybdenum disulfide can be used to manufacture semiconductor devices. For example, Molybdenum disulfide can be used inside the manufacture of field effect transistors (FETs), which can be commonly used in microelectronics due to their high-speed and low power consumption. Furthermore, molybdenum disulfide may be used to manufacture solar cells and memory devices, among other things.

Molybdenum disulfide photovoltaic materials:

Molybdenum disulfide features a wide bandgap and light transmittance, which explains why it really is used being an optoelectronic material. For example, molybdenum disulfide may be used to manufacture transparent conductive films, that have high electrical conductivity and light-weight transmittance and they are commonly used in solar cells, touch screens and displays. Furthermore, molybdenum disulfide may be used to manufacture optoelectronic devices and photoelectric sensors, among others.

Molybdenum disulfide chemical sensors:

Due to its layered structure and semiconducting properties, molybdenum disulfide can be used as being a chemical sensor material. For example, molybdenum disulfide may be used to detect harmful substances in gases, like hydrogen sulfide and ammonia. Furthermore, molybdenum disulfide may be used to detect biomolecules and drugs, among others.

Molybdenum disulfide composites:

Molybdenum disulfide can be compounded with other materials to make composites. For example, compounding molybdenum disulfide with polymers can produce composites with excellent tribological properties and thermal stability. Furthermore, composites of molybdenum disulfide with metals can be prepared with excellent electrical conductivity and mechanical properties.

High quality Molybdenum disulfide supplier

If you are looking for high-quality Molybdenum disulfide powder or if you want to know more information about MoS2 Molybdenum disulfide powder, please feel free to contact us and send an inquiry. ([email protected])